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Introduction

?

?Petrie, Ruth E. and Dance, Sarah L., Ensemble-based data assim-

ilation and the localisation problem, Weather, 65, pp 65–69, 2010.

Ensemble data assimilation
widely in weather and climate
community.
Ensemble assimilation has
various challenges.
Theoretical: ensemble
initialization, covariance
localization, inflation, model
error, covariance sensitivity, etc..
Computational: ensemble
simulation, assimilation of large
data sets, high dimensional
model simulation, etc..
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Introduction cont.

Hurricanes are extreme weather
events with a high impact on
society
Accurate hurricane simulation is
challenging: many physical
processes, time and space
scales, complexity.
Assimilation for hurricane
simulation and prediction is an
active area of research, lots of
work to be done!
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Sherman-Morrison-Woodbury solver
Comparison Experiments

Ensemble Data Assimilation
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Data Assimilation: Methods to produce an accurate estimate of the state
of a model for a given data set (observations).
Ensemble Kalman Filter (EnKF): Sequential data assimilation method that
uses an ensemble of model states to calculate the state mean and error
covariance matrix needed to compute an improved model state.
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Matrix-Free EnKF

EnKF equations:

xa
i = xf

i + K
(

yo
i − Hxf

i

)
,

K = Pf HT (HPf HT + R
)−1

rewrite as(
HPf HT + R

)
zi =

(
yo

i − Hxf
i

)
xa

i = xf
i + Pf HTzi

Typical techniques use SVD
or Cholesky decomposition.
For large “assimilation
systems”, matrix operations
become expensive and
matrices may be too large to
hold in memory. (dense set
of observations)
EnKF can be done
matrix-free.
Iterative methods deemed to
expensive to solve the linear
system.

H.C. Godinez Ensemble Assimilation



Introduction
Ensemble Data Assimilation
Hurricane Data Assimilation

Assimilation Results
Conclusion and Future Work

Matrix-Free EnKF
Sherman-Morrison-Woodbury solver
Comparison Experiments

Sherman-Morrison-Woodbury solver

(
1

N − 1

N∑
i=1

(
Hxf − Hxf ) (Hxf − Hxf )T

+ R

)
zi =

(
yo

i − Hxf
i

)
Sherman-Morrison-Woodbury
identity:

(
A + uvT)−1

= A−1− A−1uvTA−1

1 + vTA−1u
.

Egidi and Maponi (2006) devel-
oped a direct solver by repeatedly
applying the Sherman-Morrison-
Woodbury identity to solve Ax = b
for

A = A0 +

N∑
i=1

uivT
i

computational cost: linear
in the number of
observations and state
dimension.
compatibility: Ideally suited
for our linear system.
multiple rhs: Proportional to
the cost of a vector dot
product.
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2-D Shallow Water Model
A global 2D shallow water (SW) model on a sphere is used for the
numerical experiments.

Model describes hydrodynamic flow on a sphere assuming vertical
motion is much smaller than horizontal motion.
Assume fluid depth is small compared with radius of the sphere (radius
of Earth).
Computations done on a 2.5◦ × 2.5◦ grid with a time step ∆t = 450s.
xt

0: trajectory produced by SW integration with an initial fluid depth
defined by

h0 (λ, θ) =
1
g

(
Φ̄ + 2Ωaϑ sin3(θ) cos(θ) sin(λ)

)
,

and initial velocities u0, v0 derived from the geostrophic relations.
initial condition for the control run xb

0 is taken from shifting xt
0 one grid

point to the left.
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Timing Experiments

Comparison of timing between our Matrix-Free EnKF and an SVD based
implementation from Evensen 2003.

Ensemble of size N = 100 model simulations was used.
Ensemble I.C. generated by perturbing xb

0 with a random vector
sampled from a normal distribution with mean zero.
A single assimilation was performed to compare timing between both
methods.
Ensemble is integrated up to 24h or 192 time steps.
A single assimilation is done at 6h or time step 48.
Varied the number of observations to assimilate from 200 to 3 × 107.
Overhead of both methods are compared, as well as subsequent
operations.
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SW Reference Solution
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CPU Timing Results
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Left figure: Overhead cost of SM (blue) and SVD (red). Right figure:
subsequent cost of additional rhs for SM solver (blue) and matrix operations
for the SVD implementation (red).
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Hurricane Data Assimilation

Hurricane track, structure, and intensification are important
characteristics in simulation and prediction
Hurricane data assimilation is an active area of research
Several studies have used ensemble-based methods (Zhang et.al.
2009, MWR) and variational methods (Zou et.al. 2010, MWR)
Our work concentrates in determining key model parameters to
improve hurricane simulations through data assimilation
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HIGRAD Hurricane Model

HIgh GRADient applications model (HIGRAD) used for hurricane
simulations
HIGRAD is composed of a predictive model, based on the
Navier-Stokes equation set, coupled to a bulk cloud model
Bulk micro-physical model based on continuous approximation
presented in Reisner and Jefferey (2009)
Discretizations on A-grid using semi-implicit procedure with 4th order
Runge-Kutta time discretization
The advection scheme used was the quadratic upstream interpolation
for convective kinematics advection scheme (QUICKEST, Leonard and
Drummond 1995) in combination with a flux-corrected transport
procedure (Zalesak 1979).
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Parameters of interest

wind shear φshear: tuning coefficient that determines the shear
impacting the hurricane
surface friction κsurfacefriction: coefficient related to the no-slip boundary
condition, magnitude impacts intensity and structure of the hurricane
surface moisture qvsurface: tunning coefficient that controls the amount of
surface moisture in the hurricane
turbulent length scale φturb: tunning coefficient associated with turbulent
transport of water vapor from the surface to the free atmosphere
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Dual-doppler data

Reasor, Paul D., Matthew D. Eastin, John F. Gamache, 2009: Rapidly Inten-

sifying Hurricane Guillermo (1997). Part I: Low-Wavenumber Structure and

Evolution. Mon. Wea. Rev., 137, 603-631.

Guillermo 1997: strong shear
storm
Two NOAA WP-3D research
aircraft observed the inner
core of Hurricane Guillermo
from 1830 UTC 2 August to
0030 UTC 3 August
Dual-doppler reflectivity
observations were collected
in 10 flight passes
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Dual-doppler Radar Data

Derived data fields

Primary driver for a hurricane
is latent heat release arising
from condensation of
rainwater to water vapor
Horizontal wind fields:
retrieved using a variational
approach
Latent heat fields: retrieved
using derived winds and
liquid water content following
Guimond et.al. (2011, J.
Atmos. Sci.)
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Model and Ensemble Setup

Initialization of HIGRAD model via nudging of horizontal momentum
fields and latent heat fields derived from Guillermo data
Model spinup is run for a total of 11 hours with 6 hours for initialization
and 5 hours for comparison against the dual-Doppler radar data
(starting time period is 1900 UTC)
Background average wind added to keep storm in center of
discretization domain
Stretch mesh used for horizontal and vertical spatial discretization
Time step size was limited to 1 s to avoid any instabilities associated
with exceeding the advective Courant number limit.

H.C. Godinez Ensemble Assimilation



Introduction
Ensemble Data Assimilation
Hurricane Data Assimilation

Assimilation Results
Conclusion and Future Work

Model and Ensemble Setup
Ensemble Structure
Parameter Estimation
Simulation Experiments

parameter interval
surface moisture [0.05, 0.2]

wind shear [0.1, 1.0]
turbulent length scale [0.1, 10.0]

surface friction [0.1, 10.0]

120 ensemble members were generated by perturbing only parameters
with Latin Hypercube
Each ensemble simulation needed 225, entire ensemble typically
utilized 27,000 processors on Oak Ridge National Lab’s Jaguar
computing platform
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Comparisons between azimuthally-averaged profiles for the ensemble average (left)
and ensemble 44 (right) and observations. Model in contours and observations are
shaded. Fields are for tangential winds (top), radial winds (center), and latent heat
(bottom). Time periods for comparisons are at flight leg 5 (2117 UTC) and 9 (2333
UTC).
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Parameter Estimation Experiments

Matrix-free EnKF utilized for assimilation of data to obtain model
parameters
Three data assimilation experiments: assimilation of latent heat (DA1),
horizontal winds (DA2), and both (DA3)
Only observations were dBz is non-zero are assimilated (observation
mask)
Observations error is 16% for assimilation
The 10 observational set are assimilated independently (no
reinitialization)
Objective: improvement in qualitative and quantitative structure of
storm, and intensity

Before assimilating all 10 time periods of a given derived field, the impact of
assimilating increasing amounts of observational data for a single time
period was assessed.
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EnKF parameter estimation as a function of number of latent heat observations
assimilated at the first observational time period (1900 UTC). The additional latent
heat observations were computed by adding vertical layers above and below the
existing layers with the first layer being at 5 km in height.
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Time distribution of the ensemble average parameter estimates with EnKF from DA1
(blue line, latent heat), DA2 (red line, horizontal winds), and DA3 (green line, both
latent heat and horizontal winds).
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Analysis parameters averaged over time for ensemble member 44 (HG 44), DA1,
DA2, and DA3. The vertical lines from the dots indicate the time variance of the
parameter estimates for the various data sources.
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Simulation Experiments

parameter/simulation or DA DA1 DA2 DA3
surface moisture 0.08393103 0.10159057 0.0859986
wind shear 0.44383188 0.37766521 0.41229634
turbulent length scale 3.21374524 4.64259443 3.52878663
surface friction 1.35369145 2.49589051 2.31821474

Table: Time average parameter values for each of the data assimilation experiments
DA1-DA3.

Model simulations were performed with estimated time averaged
parameters
Three experiments were performed using parameters estimated using
latent heat (SDA1), horizontal winds (SDA2), and both (SDA3)
Estimated parameters are model and data dependent!
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Comparisons of the azimuthally-averaged profiles between a model simulation
(contours) using estimated parameters from DA1 and observations (color shaded).
Plots for tangential winds (top), radial winds (center), and latent heat (bottom) for
flight leg 5 (2117 UTC) and 9 (2333 UTC).
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Comparisons of the azimuthally-averaged profiles between a model simulation using
estimated parameters from DA2 and observations (color shaded). Plots for
tangential winds (top), radial winds (center), and latent heat (bottom) for the same
time periods as in the previous figure.
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pressure from Hurricane Guillermo.
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Conclusions

Matrix-free EnKF more efficient for assimilation of large data sets than
traditional matrix-oriented implementations
Key model parameters are estimated through the assimilation of
horizontal wind or latent heat fields available for Hurricane Guillermo
Primary driver for a hurricane is latent heat release
Depending on the derived data fields, the resulting parameters can
produce a storm with the correct structure (latent heat) or the correct
intensity (wind fields), observations near surface?
Estimated parameters from different data are within one std of each
other, differences in simulation suggest high sensitivity to their values
Utilization of other data fields, such as radar reflectivity, require the
model to faithfully capture physical processes that are not yet well
understood
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Future Work

Localization in Matrix-free implementation (Khatri-Rao identity)
In order for a given hurricane model to both reproduce the correct
structure and intensity, numerical errors, especially near cloud edges,
must be small
Reduce the impact of cloud-edge errors either via the calibration of a
tuning coefficient employed within an evaporative limiter (Reisner and
Jeffery 2009,MWR)
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Algorithm 1 Sherman-Morrison solver

1: procedure SHERMAN-MORRISON(A0, U, V, b, x)
2: Solve A0x0 = b
3: Solve A0y0,k = uk for k = 1, . . . ,N
4: for i = 1, . . . ,N − 1 do
5: xi = xi−1 − vT

i xi−1

1+vT
i yi−1,i

yi−1,i

6: for k = i + 1, . . . ,N do
7: yi,k = yi−1,k − vT

i yi−1,k

1+vT
i yi−1,i

yi−1,i

8: end for
9: end for

10: xN = xN−1 − vT
N xN−1

1+vT
N yN−1,N

yN−1,N

11: end procedure
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